

CO221: Digital Design - Hardware Project

SAP-I Computer
from discrete components

Project Team:

● Jaliyagoda A.J.N.M. (E/15/140)
● Herath H.M.M.E.W.L. (E/15/123)
● Karunarathna S.D.D.D. (E/15/173)
● Samarasinghe U.G.S.B. (E/15/316)
● Premathilaka M.P.U. (E/15/280)
● Irfan M.M.M. (E/15/138)
● Tennakoon T.M.P.B. (E/15/350)

1

Contents

1. Introduction
2. Design Procedure

2.1. Modules

2.1.1. Clock Module
2.1.2. Program Counter
2.1.3. Registers
2.1.4. Arithmetic and Logic Unit
2.1.5. Output Register
2.1.6. RAM and Programmer
2.1.7. Control Sequencer
2.1.8. Motherboard and the Data Bus

2.2. Programs and Additional Hardware

2.2.1. EEPROM Programmer
2.2.2. Assembly Language Instructions

3. Results
4. Expenditures
5. Conclusions and future works
6. References
7. Appendix

7.1. Schematics Diagrams
7.2. Project Repository
7.3. Project Page

2

1. Introduction

“SAP” is the shortened form of “Simple As Possible”. SAP-1 is the first stage in the
evolution of the modern computers. This design contains all the most essential components of a
modern computer and it covers many advanced concepts in Computer Architecture.

SAP-1 is a bus organized computer. All the components are connected with a single
8-bit bus (W) through tri-state buffers.

Specifications:

● 8-bit Bus
● 4-bit Program Counter
● 4-bit Memory Address Register (MAR)
● 16-byte Memory
● 8-bit Instruction Register (IR)
● 5 cycle micro-instructions with 16-bit words
● 8-bit Accumulator
● 8-bit B register
● 8-bit Full Adder/ Subtractor
● 8-bit Output Register

Figure 1.1:​ SAP-1 Organization

3

2. Design Procedure

2.1 Modules

All the modules were separately designed, fabricated and finally connected each other
on a single circuit board; motherboard which includes all the data and signal buses

Here is the list of modules we were designed

● Clock Module
● Program Counter
● Registers (Register A, Register B, Instruction Register)
● Arithmetic and Logic Unit (ALU)
● Output Register
● RAM and Programmer
● Control Sequencer
● Motherboard

All the modules were designed as ​Printed Circuit Boards (PCB)​. The design was done

by using Fritzing (A open-source PCB designing software) and Fabricated using PCB Milling
Machine.

4

2.1.1 Clock Module

The computer’s clock module is used to synchronize all operations. Basically, there are some
methods to implement a clock module for a computer. So this 8-bit computer’s clock module
was built based on 555 timer IC.

There are two modes in the clock module.

● A-stable mode: ​In this mode, clock pulses are generated automatically. The frequency
of the clock pulses depends on the capacitance of the capacitor (connected to pin 2) and
the resistance of the resistor (connected between pin 6 and 7). A potentiometer and a
resistor are connected between pin 6 and 7 of the IC. So by changing the resistance of
the potentiometer, the frequency of the clock pulses can be changed.

● Monostable mode​: Whenever the user wants to generate clock pulses manually, the

monostable mode can be used. But the bouncing effect must be considered. Therefore
another 555 timer IC is used to de-bounced the circuit.

Bi-stable mode

There must be a way to switch between astable mode and monostable mode. So the
bistable mode is used. Since a toggle switch is used, the circuit must be debounced. Therefore
another 555 timer IC is used for that. So the bistable circuit gives a debounced stable output.

Halt Status

When the user wants to halt the computer programmatically, the halt state can be used.
Normally the halt input is in law state and it is inverted by a NOT gate. When the HALT
instruction was called (in 3rd microinstruction), the circuit was implemented such that the
computer halts the execution of instructions.

Figure 2.1:​ Clock Module (PCB Layout)

5

2.1.2 Program Counter

The program is stored in the RAM as a listed instruction. In order to execute them, the
instructions must be fetched from the RAM. So, the program counter is used to keep track of
which address is where. It contains the address or the location of the instruction being executed
at the current time.

This is a 4-bit counter as the memory has a 4-bit address. This works similar to register
A or register B because, it stores a value, sends and receives values from the bus.

Program counter contains 3 control signals.

● Program count out (CO)​: Sends the stored value to the bus

● Jump (Program counter in)​: ​Normally the program counter counts in order from 0. This
signal is used to jump around or to run a loop. When the jump signal is enabled it takes
the 4 least significant bits from the bus (as this is a 4-bit program counter) and put it to
the program counter. That will be the next address that executes.

● Count enable (increment)​: ​To increase the program counter once per instruction cycle,

not per clock cycle (because the instruction might take multiple clock cycles). When this
is enabled program counter will increase on each clock cycles. So, this signal is enabled
to take next instruction (increase the counter value) and then the signal is disabled (store
and doesn’t continue the increment while executing that instruction until the next
instruction).

74LS161 was used as a synchronous 4-bit binary counter. This chip gives the ability to

control the “jump signal” by the “load pin 9” and “count enables signal’ by the “enable pin 7 and
10”. But to the “program counter out signal” a tri-state-logic interface is needed for the bus. So, it
can control whether the output of the chip is as the same as the value that going to the bus. For
that 74LS245 is used which have tri-state buffers that allow enabling or isolate.

Figure 2.2:​ Program Counter (PCB Layout)

6

2.1.3 Registers

The SAP-1 computer is designed with three similar 8-bit register modules. Two of them,
Register A and Register B are reserved for storing two input numbers to the ALU. The other
module is the instruction register. Each module has two 4-bit D-type registers and one 8-bit
tri-state buffer to connect and disconnect the output stream to the main bus.

Control Signals (Register A and B):

● AI, BI, II: Register input enable
● AO, IO: Register output enable
● RST: Reset memory
● CLK: Clock Signal

Data Buses (Register A and B):

● 8-bit Data In (input) from W Bus
● 8-bit Data Out (output) to W Bus
● 8-bit Data Out (output) to ALU

The instruction register is little different from the two other registers. Its 4 least significant

bits are used to store current Instruction and wired to the control unit. Most significant 4 bits are
used to store instruction data.

Figure 2.3:​ Register (PCB Layout)

7

2.1.4 Arithmetic and Logic Unit

SAP-I is capable of doing two binary operations and they are addition and subtraction.
These mathematical operations are done by the Arithmetic and Logic Unit (ALU). Two registers
are used to feed data to the ALU.

Figure 2.4: ​Block Diagram of the ALU

Components

● 74LS283 (4-bit binary full adder with fast carry) x 2
● 74LS245 (Octal bus transceiver) x 1
● 74LS86 (Quad 2-input Exclusive OR gate) x 2

Design

There are 8 input lines to the ALU from both register A and register B. Therefore, two
cascaded 4-bit adders are used. If the chosen operation is subtraction the XOR panel is in
active state. Thus, ALU gets the inverted value in the register B.

Two inputs addition is typical bitwise addition and there is a specific method used to get
the binary subtraction. When the subtracting instruction is given to the computer it calculates the
2’s complement value of the input B and adds it to the input A to get the result A-B

8

Figure 2.5:​ Schematic diagram of the 8-bit ALU

The output lines of adders are directed to the tri-state buffer and the buffer is connected
to the main bus.

Figure 2.6:​ ALU (PCB Layout)

9

2.1.5 Output Register

The Output Display of the SAP-1 computer is designed to display a decimal
representation of an 8-bit binary number (0-255). In this design, we have programmed a single
EEPROM to display each of the 3 digits of a given decimal number using four 7-segment
displays.

Components

● 1kΩ resistor
● 100kΩ resistor
● 0.01µf capacitor
● 555 timer IC
● 74LS08 (QUAD AND gate)
● 74LS76 (Dual JK flip-flop)
● 74LS139 (Dual 2-line to 4-line decoder)
● 74LS273 (Octal D flip-flop)
● 28C16 EEPROM
● Common Cathode 7-segment display x 4

Design

Initially, we have to create a separate clock pulse for the output display that runs at a
different speed than the SAP-1 computer. To do this we use a 555 timer connected with a
0.01µF capacitor, a 100kΩ resistor, and a 1kΩ resistor.

We wanted to drive four 7-segment displays sequentially. To do that we wanted a ring
counter. We used a 74LS76 IC which include two JK flip-flops. By feeding the output of the first
flip-flop to the clock of the second flip-flop we can create a counter which counts from zero to
three in binary and that controls which 7 segment display turned on in given time.

After that we need to program the EEPROM to display a certain digit at a certain time at
each of the display to create the illusion of the number is displayed continuously without any
delay.

The output of the A register has to connect to 8 of the address lines of the EEPROM to
input the register the number which is needed to display, leaving 3 empty address lines. By
connecting the 2 outputs of the counter to a two remaining address lines we can program the
EEPROM to display each digit of the decimal value of the number inputted to the EEPROM
using three 7-segments displays (We leave the remaining display empty for this circuit, but hope
to use it to display negative numbers with 2s complement notation).

10

This allows the 7-segment displays to display each digit of the inputted value at each
clock pulse in all of the 7-segment displays. Therefore we need a way to keep only the
appropriate display on while all of the other displays are at off state for a single clock pulse,
therefore, each of the display shows the appropriate digit of the number. To do that we use a
74LS139 decoder. By connecting the two outputs of the counter to the inputs of the decoder we
can create a cyclic pulse that goes low at each output in turn. By connecting outputs of the
decoder to the four 7-segment displays, we can make the displays to show the appropriate digit
of the number inputted to the EEPROM, therefore, creating the display of the SAP-1 computer.

Figure 2.7:​ Output Register (PCB Layout)

11

2.1.6 RAM and Programmer

RAM is the module contains all the instructions and it should be programmable from
outside. That means the inputs for the RAM may be given through W bus or Manual Switches.

To fulfill this requirement, RAM was designed as two separate modules, Programmer
and Memory module.

3.1.6.1 Programmer

The programmer contains 2:1 multiplexer (74LS157) for 4 address bits and for 8 data
bits. A toggle switch was used as the control signal for the multiplexer. When it is pressed,
module acts as a programmer and input can be gives using small DIP switches. When the
toggle button was released, it acts as regular RAM and inputs were taken from the W bus.
Memory Address Register also contains in the Programmer Module.

Control Signals:

● ~W: Write memory address (output signal)
● RI: RAM In
● CLK: Clock
● ~MI: Memory address in

Data Buses:

● 4-bit Address (output) to RAM
● 8-bit Word (output) to RAM
● 8-bit Data In (input) from W Bus

3.1.6.2 RAM Memory

Memory module contains two ​74LS189​ 4-bit RAM ICs. 74LS189 has inverted output

pins, so all the outputs were inverted using 74LS04 ICs and connected to W Bus through
74LS245 tri-state buffer.

Control Signals:

● ~RO: RAM Out
● ~W: Write memory address

Data Buses:

● 4-bit Address (input) from Programmer
● 8-bit Data Out (output) to W Bus

12

Figure 2.8:​ RAM Programmer (PCB Layout)

Figure 2.9:​ RAM Memory (PCB Layout)

13

2.1.7 Control Sequencer

Control Sequencer is the module that controls all other modules in the SAP-1 computer.
Instructions were given from RAM and sequencer contains internal ring counter to execute 5
microinstructions itself.

In addition to providing control signals, it contains a reset switch, which can be used to
reset the computer by clearing all memory elements.

Control Sequencer was designed as two modules. The first one contains
pre-programmed EEPROM to output control signals for given instruction and microinstruction
signals. The second module is for invert control signals if destination module works on active
low condition. It acts as an indicator of control signals too.

Inputs/Outputs:

● 4-bit Instruction (input) from Instruction Register
● 12-bit Control Signal (output)
● Reset. ~Reset signals

Control Signals:

● HLT: Standby the computer
● MI: Memory Address In
● RI: RAM In
● RO: RAM Out
● IO: Instruction Register Out
● II: Instruction Register In
● AI: Register A In
● AO: Register A Out
● ZO: ALU Out
● SU: Subtract
● BI: Register B In
● OE: Output Enable
● CE: Counter Enable
● CO: Counter Out
● J: Jump
● X: Unused Pin

14

Figure 2.10:​ Control Unit A (PCB Layout)

Figure 2.11:​ Control Unit B (PCB Layout)

15

2.1.8 Motherboard and Data Bus

We have designed 12 separate modules and wanted a way to connect these all
modules. Therefore we designed a motherboard, which has dimensions of 300mm x 430mm.
Due to its size, no way to make it as a printed circuit board. As a solution, we choose a plastic
board and milled slots to pass the control and data pins from each module to the bottom and
wired and soldered them using single core copper wires.

Figure 2.12:​ A picture of the wirings on the bottom of the motherboard

16

2.2 Programs and Additional Hardware

We were designed few additional hardware/software which was not included in final the
prototype.

2.2.1 EEPROM Programmer

We wanted to program 2kB EEPROM which has 11 address bits and 8 data bits.
Therefore we decided to make an EEPROM Programmer using Arduino Mega board (which has
54 digital IO pins)

2.2.2 Assembly Language Instructions

We made a truth table for each instruction and its microinstruction with 15 control signals.

Figure 2.13:​ The Table we prepared for each instruction

Truth table was programmed into two 28C16 EEPROMs using the EEPROM
Programmer we designed with Arduino Mega Board.

17

Figure 2.14:​ Finalized instruction sheet

18

3. Results

SAP-1 design can add or subtract two numbers, run an infinite loop by executing a given
instruction sequence.

Sample Program:

Shows 100 in the display and increase the value shown in it by 7 infinitely.

N = 100;
print(N);
while(1) {

N = N + 7;
print(N);

}

Address Assembly Code Machine Code
0000 LDA 9h 0001 1001
0001 OUT 1110 xxxx
0010 ADD Ah 0010 1010
0011 OUT 1110 xxxx
0100 JUMP 2h 0110 0010
… … ...
1001 100 0110 0100
1010 7 0000 0111

19

4. Expenditures
Here is the rough expenditures of our project.

Component Unit Price Quantity Total

NE555 20.00 4 80.00

74LS00 35.00 2 70.00

74LS02 40.00 1 40.00

74LS04 40.00 5 200.00

74LS08 40.00 3 120.00

74LS32 35.00 1 35.00

74LS76 161.00 1 161.00

74LS86 40.00 2 80.00

74LS138 25.00 1 25.00

74LS139 40.00 1 40.00

74LS157 78.00 4 312.00

74LS161 27.00 4 108.00

74LS173 77.00 8 616.00

74LS189 89.00 2 178.00

74LS245 35.00 6 210.00

74LS273 70.00 1 70.00

74LS283 80.00 2 160.00

28C16 250.00 3 750.00

LED (3mm) 1.50 56 84.00

Copper Boards 265.00 2 530.00

Single Core Wire 15.00 25 375.00

7 Segment Display 130.00 1 130.00

Solder (0.8mm) 20.00 20 400.00

Long Leg Headers 6.00 15 90.00

Pin Headers 10.00 5 50.00

IC Bases (8 pin) 3.50 4 14.00

IC Bases (14 pin) 8.00 15 120.00

IC Bases (16 pin) 10.00 27 270.00

IC Bases (20 pin) 10.00 7 70.00

IC Bases (28 pin) 12.00 6 72.00

Total 5460.00

20

5. Conclusions and future works

We hope to add a Flag Register and give an ability to compare values and make
conditional jumps. Then we can write programs which have selections (if structure)

Current clock module generates clock pulses on very small frequency range (0.5Hz to
2Hz) and unable to operate in high frequencies. We hope to increase the clock frequency and
make it faster.

We hope to improve current design and upgrade it into SAP-II computer which has more
instructions and better features.

21

6. References

1. Digital Computer Electronics ​Third Edition, 1999, McGraw-Hills
Albers Paul and Jerald A. Brown

2. Build an 8-bit computer from scratch
https://eater.net/8bit

3. Youtube: Building an 8-bit breadboard computer
https://www.youtube.com/playlist?list=PLowKtXNTBypGqImE405J2565dvjafglHU

 4. 74 Series IC Datasheets
http://www.skot9000.com/ttl/

22

https://eater.net/8bit
https://www.youtube.com/playlist?list=PLowKtXNTBypGqImE405J2565dvjafglHU
http://www.skot9000.com/ttl/

7. Appendix

7.1 Schematics Diagrams

7.1.1 Program Counter

23

7.1.2 Register

24

7.1.3 ALU

25

7.2 Project Repository

https://github.com/NuwanJ/peraSAP-I​ (open-source under Apache License 2.0)

7.3 Project Page

http://nuwanjaliyagoda.com/projects/8bit-computer

26

https://github.com/NuwanJ/peraSAP-I
http://nuwanjaliyagoda.com/projects/8bit-computer

27

